Часть 2 «Специальные цементы»

Посмотреть все статьи

 

(Продолжение темы, начатой в предыдущей статье)

 

Гидрофобизация бетонов и растворов.

Некоторые ПАВ не только пластифицируют свежеприготовленные смеси, но вместе с тем гидрофобизируют бетоны (растворы) и изделия из них.

Бетоны (и растворы) представляют собой капиллярно-пористые тела и по своей природе гидрофильны, т. е., находясь в соприкосновении с водой, они ее впитывают. Последствия, возникающие от вредного влияния воды, а также от попеременного замораживания увлажненного бетона с последующим его оттаиванием становятся заметными уже через несколько лет. Бетон с низкими показателями по морозостойкости разрушается буквально на глазах.

В специализированных бетоноведческих изданиях, в качестве примера подобного разрушения, обусловленного низкой морозостойкостью примененного бетона, очень часто приводится случай разрушения летом 1976 года в Австрии моста Рейхсбрюкке через Дунай.

Дефекты в бетоне, обусловленные вредным влиянием воды не сразу достигают опасного предела, а накапливаются постепенно, — иногда этот процесс вообще визуально незаметен. Но несомненным является тот факт, что эти разрушительные процессы начинаются сразу же после изготовления бетонного изделия и заканчиваются только после его полного разрушения.

Негативное влияние воды во всех её агрегатных состояниях (водяной пар, вода, лед) вредно сказывается на сохранности бетона на всем протяжении его службы. Исключить или хотя бы значительно минимизировать его можно только уменьшением поступления этой воды в толщу бетона. Т.к. главной транспортной артерией поступления воды в бетон являются капиллярные ходы, бороться с водонасыщением бетона очень сложно. Капиллярные силы настолько сильны, что различные наружные защитные обмазки или изоляции мало эффективны – рано или поздно вода находит себе путь.

Против капиллярных сил невозможно бороться, но оказывается их можно попросту “выключить”. Для этого достаточно изначально гидрофильным внутренним стенкам пор и капилляров, пронизывающих все бетонное изделие, придать гидрофобные свойства. Это с успехом делают гидрофобизирующие добавки. (см. Рисунок 9.1.2.3_1 и Рисунок 9.1.2.3_2)

Уровень воды в<br />
гидрофобном (А) и гидрофильном (Б)<br />
капиллярах» border=»0″ /></p>
<p><span style=Рисунок 9.1.2.3_1 Уровень воды в гидрофобном (А) и гидрофильном (Б) капиллярах

ода на<br />
поверхности гидрофильного (А) и<br />
гидрофобного (Б) пористого тела.» border=»0″ /></p>
<p><span style=Рисунок 9.1.2.3_2 Вода на поверхности гидрофильного (А) и гидрофобного (Б) пористого тела.

 

Противокапиллярное давление гидрофобизированного пористого тела достаточно велико, и сам факт его существования подтверждает правильность часто употребляемого в этом случае термина “водоотталкивающее покрытие”. И хотя этот термин в данном контексте с терминологической точки зрения неверен (ведь никакого покрытия, по сути, нет), с физической стороны он отражает сущность происходящих явлений.

Именно благодаря этому противокапиллярному давлению пористые (а, равно как и условно-пористые) материалы, оставаясь воздухо- и паропроницаемыми, оказываются непроницаемыми для воды в жидкой вазе, даже при достаточно высоких гидростатических давлениях.

Давление, при котором вода начинает просачиваться в гидрофобизованные материалы (водоупорность), определяется в основном шириной пор, так как существующие водоотталкивающие покрытия имеют примерно одинаковую степень гидрофобности. Так, например, гидрофобизованный материал, имеющий поры со средним диаметром около десяти микрон, способен противостоять гидростатическому давлению около 1/3 атмосферы, т. е. выдерживать, не впитывая в себя, столб воды высотой до трех метров. Если вспомнить, что самый сильный дождь при ураганном ветре создает гидростатическое давление около 20 — 40 см водяного столба, то становится ясным, что гидрофобизация защищает строительные материалы от проникновения в них дождевой влаги вполне надежно. Тем не менее, если гидростатическое давление воды на материал превышает противокапиллярное (например, при нахождении над поверхностью гидрофобизованного материала толстого слоя воды), то после заполнения пор водой протекает процесс фильтрации, который может идти даже легче, т. е. с меньшим коэффициентом проницаемости, чем, если бы материал был гидрофильным. Это обусловлено тем, что гидрофильные материалы сорбируют воду, проникающую в мельчайшие дефекты поверхности пор. Это вызывает явления набухания, сокращающего размеры пор, а также пептизации и расклинивания, в результате которых от поверхности отщепляются малые частицы, закупоривающие поры. У гидрофобных материалов эти явления проявляются лишь в незначительной степени или не обнаруживаются вовсе.

Благодаря противокапиллярному давлению пропитанные водой гидрофобизованные пористые материалы и высыхают значительно быстрее, чем негидрофобизованные, впитавшие такое же количество воды, так как вода стремиться выйти из несмачивающихся капилляров – противокапиллярное давление её оттуда выдавливает. Чтобы выгнать же воду из гидрофильных капилляров, напротив, необходимо приложить внешнее давление. Таким образом, гидрофобизация пористых, волокнистых или порошкообразных материалов служит защитой от проникновения воды лишь при сравнительно невысоком гидростатическом давлении. Поэтому рекомендовать гидрофобизацию подводных гидротехнических сооружений, резервуаров и емкостей, водопроводных труб и прочих водотранспортных, водоизолирующих или водоудерживающих сооружений, находящихся под постоянным большим давлением воды нельзя. В этом случае следует помнить, что абсолютную водонепроницаемость, возможно, выполнить только полностью исключив в теле бетонной конструкции пор и капилляров. Это возможно только при помощи специальных высококачественных бетонов.

Для обеспечения максимальной водоупорности (водонепроницаемости) гидрофобизованных материалов важны не только возможно большой краевой угол воды с водоотталкивающим покрытием и шероховатая структура поверхности, обеспечивающая наибольший кажущийся угол смачивания. Не менее существенна минимальная величина эффективного радиуса пор материала и отсутствие стремления гидрофобного покрытия к распространению па поверхности вода — воздух за счет поверхностного растворения. Необходимо также, чтобы во избежание понижения краевого угла водоотталкивающая пленка плохо впитывала в себя воду. Все эти качества могут обеспечить либо изначально водонерастворимые, либо, что технологичней, изначально водорастворимые, но в составе бетонной композиции переходящие в водонерастворимые, гидрофобизирующие добавки

Одним из убедительных практических примеров, показывающих эффективность гидрофобизации бетона, может служить состояние конструкций Карлова моста через р. Влтаву в Праге. Этот мост был построен в XIV веке. Для сооружения его шестнадцати массивных опор был применен бетон на известковом вяжущем с добавкой куриных яиц. Природная водная эмульсия олеина, других жиров и иные составные части куриного яйца являются прекрасными гидрофобизирующими поверхностно-активными веществами. Карлов мост по размерам (его длина 516 м), а главное по характеру водной среды, климатологических и других факторов, воздействующих на бетон, имеет много общего с упоминавшимся выше венским мостом Рейхсбрюкке. Однако обычный цементный бетон последнего разрушился через несколько десятилетий, а известковый (на воздушной извести!), но хорошо гидрофобизованный бетон Карлова моста, являющегося выдающимся архитектурным памятником Европы, служит уже более пятисот лет.

Объемная гидрофобизация строительных материалов с точки зрения их долговечности эффективнее, чем поверхностная обработка водоотталкивающими или кольматирующими составами. Об этом, в частности, свидетельствует следующий факт. В начале текущего столетия за рубежом получили широкое распространение флюаты (растворимые соли кремнефтористоводородной кислоты), которые наносили на поверхность облицовки из природных (преимущественно карбонатных) камней или штукатурки. Исследования, проведенные в 30-х годах показали, что флюатированный камень через 20 — 25 лет оказался в худшем состоянии, чем обычный. С тех пор коренным образом изменилось отношение к флюатированию как методу поверхностной обработки материалов.

Поризация легких бетонов.

Добавки некоторых ПАВ, вызывая вовлечение воздуха в бетонные смеси, способствуют уменьшению объемной массы легких бетонов (на пористых заполнителях) и вместе с тем улучшают и другие свойства материала, и в первую очередь их морозостойкость.

 

9.1.2.4 Гидрофобизированные цементы

 

 

9.1.2.4.1 История применения гидрофобизирующих добавок в технологии бетонов.

Анализ научно-технической информации по управлению технологией цементных бетонов, в частности с помощью химических добавок, свидетельствует о непрерывном развитии этого процесса.

Как известно, бетон используется в качестве строительного материала уже несколько тысячелетий. Минойцы на о. Крит, например, изготовляли бетон из дробленых или размолотых глиняных черепков, связанных известью.

Греки и позже римляне добавляли к составу минойцев вулканический туф или размолотый кирпич. Это было весьма важной ступенью, поскольку такие добавки позволяли бетону затвердевать в воде. Они практически изменили процесс твердения цемента и связывания им бетона. Два знаменитых сооружения, свидетельствующие о гибкости и долговечности древнего бетона, сохранились до наших дней — Базилика Константина и Пантеон в Риме.

Между древними и современными цементами имеется одно значительное различие. Греческие и римские цементы затвердевали и наращивали прочность в результате химического процесса — пуццолановой реакции, происходящей в присутствии извести и кремнистых материалов, растворяемых щелочью, подобно тем, что содержатся в туфе и глинистых черепках. Цементы же, изготавливаемые в настоящее время, состоят преимущественно из силикатов кальция, которые гидратируются самостоятельно, без добавления извести.

Современное развитие технологии строительства включает проблему повышения качества и долговечности бетона, которая может во многих практически важных случаях успешно решаться путем использования новых химических добавок. Для достижения высокой организации производства бетона и технико-экономической эффективности необходимо постоянно стремиться к расширению и усовершенствованию разработок по теоретическим и практическим основам применения комплексных органоминеральных добавок и создавать новые способы их приготовления и использования в бетоне в соответствии с требованиями рынка.

Применение добавок эмпирически возникло несколько столетий назад при изготовлении известковых растворов и бетонов в целях повышения их прочности, водостойкости и долговечности. Так, в древнем Риме добавки свиного сала, свернувшегося молока или свернувшейся крови использовались для улучшения штукатурных растворов.

Древнерусские мастера и зодчие практиковали введение коровьего молока, ячменной мякины, бычьей крови, льняного семени, отвара древесной коры и некоторых подобных веществ для улучшения свойств извести и строительных растворов, изготовленных на её основе.

Коровье молоко добавляли в воду при гашении извести. В молоке, как известно, наряду с казеином, белком и молочным сахаром содержится 3 – 3.5% жира в виде прямой эмульсии “масло в воде”. Жир молока состоит из глицеридов олеиновой, пальмитиновой и стеариновой кислот, по своей природе относящихся к гидрофобизаторам.

Известно, что при установке Александровской колонны в Петербурге ее фундамент залили скользким и своеобразным по составу раствором, о котором архитектор Монферран руководивший строительными работами писал: “…Так как работы проводились зимою, то я велел смешать цемент с водкою и прибавить десятую часть мыла…”

В прошлом, когда еще не была известна природа физико-химических процессов, происходящих при смешивании цемента с водой, вода добавлялась к смеси интуитивно, в зависимости от навыков людей, укладывающих бетон. Иногда бетонное покрытие было прочным, но бывали и случаи разрушения уложенного бетона. Долговечность бетона пытались повысить за счет использования оптимального количества цемента и воды при изготовлении цементной пасты. В дальнейшем было установлено, что для получения бетонов с достаточными строительно-техническими свойствами следует знать закономерности регулирования параметров цементных систем на стадии взаимодействия цемента с водой. В связи с этим возникла необходимость изучения вопросов гидратации цемента, проектирования состава бетонной смеси, роли различных добавок в ней, разработки теории водоцементного отношения и др.

Руководствуясь теорией, исследователи старались поддерживать как можно низкое водоцементное отношение, чтобы достичь наибольших прочностей цемента, однако такой подход не всегда соответствовал строительным требованиям. Попытки добавлять больше воды, чем требовалось, приводили к снижению прочности бетона, усиленному его растрескиванию и изменению основных характеристик. Все это привело к необходимости разработки добавок, снижающих расход воды и позволяющих регулировать свойства цемента по отношению к действию воды.

Одним из убедительных практических примеров эффективного применения добавок является построенный в XIV в. Карлов мост через р. Влтаву в Праге. Для его сооружения был применен бетон на известковом вяжущем с добавкой куриных яиц, которые по своему составу являются прямой водной эмульсией олеина и других жиров, обеспечивающей гидрофобизирующие свойства искусственному камню. Карлов мост служит людям более пятисот лет. хотя сделан из воздушной извести, тогда как венский мост Рейхсбрюке, построенный из обычного цементного бетона и работавший почти в аналогичных с Карловым мостом эксплуатационных факторах воздействия, разрушился через несколько десятилетий (летом 1976г.).

С расширением знаний в области разработки и применения добавок возникла потребность создания бетонов большей прочности, быстротвердеющих, схватывающихся быстрее или медленнее, чем обычный, химически стойких к вредным воздействиям и т. д. Все это способствовало развитию и усовершенствованию добавок различного назначения.

С 1850 г., т. е. с начала производства бетона на портландцементе (гидравлическом вяжущем), в него добавляли гипс для регулирования сроков схватывания. Использование добавок хлористого кальция как ускорителя или сахара как замедлителя относится к началу века – 1919 — 1920 гг. Пластификаторы начали широко применять в 1935 г., воздухововлекающие добавки — в середине 40-х гг. Позднее появились противоморозные добавки и средства ухода за бетоном в виде пленкообразующих покрытий на его поверхности.

С 1960 г. число добавок применяемых в строительстве значительно увеличивается, они становятся более разнообразными, их качество и постоянство свойств непрерывно улучшаются. Разрабатываются продукты, все более отвечающие требованиям современного строительства.

Проблеме разработки и внедрения различных химических добавок в бетоны и растворы в последние годы в мировой практике строительства стало уделяться еще большее внимание. Это обусловлено необходимостью дальнейшего улучшения технологических и эксплуатационных свойств строительных изделий и конструкций. Применение хим. добавок позволяет гибко, просто и эффективно направленно управлять рядом важнейших параметров свежеизготовленных и отвердевших бетонов.

Судя по литературным публикациям, применение добавок позволяет изготовлять бетонные смеси и бетон, которые почти полностью удовлетворяют строительно-техническим требованиям. Одним из таких требований, предъявляемых к цементам, бетонам и растворам, является необходимость регулирования свойств цемента по отношению к действию воды.

Взаимодействие цемента с водой имеет двойственный характер: полезный — необходимость службы цемента в качестве вяжущего вещества из-за химического сродства с водой и вредный — его гидрофильность, т. е. способность, как в порошкообразном состоянии, так и в виде цементного камня хорошо смачиваться водой, что, в свою очередь, приводит ко многим нежелательным явлениям. Адсорбирующая влага вызывает слипание частиц и потерю активности цемента, при приготовлении бетонных растворных смесей цемент иммобилизует избыток воды, что увеличивает пористость цементного камня и приводит к ухудшению его прочности и стойкости; кроме того, длительное воздействие воды на готовые изделия понижает их эксплуатационные свойства – в бетоне начинают развиваться коррозионные процессы.

В связи с противоречиями, заложенными в самой природе цемента, перед наукой встала проблема, которую хорошо сформулировал М. И. Хигерович — : “…изменить свойства цемента так, чтобы он стал менее гидрофилен и даже приобрел » водоотталкивающие” способность, но в то же время мог бы взаимодействовать с водой на тех стадиях применения, когда это практически нужно”. Такой цемент был назван гидрофобным (водоотталкивающим).

Понятие “гидрофобный” относится не только к цементу, но и к цементному тесту и цементному камню, полученным из такого цемента. Гидрофобность цемента достигается путем введения специальных гидрофобизирующих добавок. Однако здесь следует обратить внимание на разницу между гидрофобными и гидрофобизирующими добавками. Первые, например парафин, стеариновая кислота или кальциевые соли высших жирных или нафтеновых кислот, при смешивании с цементом не реагируют с ним и остаются в виде механической примеси. Вторые, например водорастворимые натриевые и калиевые мыла жирных, нефтяных и смоляных кислот, не гидрофобны сами по себе, но образуют гидрофобные вещества в результате химического взаимодействия с цементом – в бетонной композиции, пересыщенной гидроокисями кальция, в результате обменных реакций по кальцию они превращаются в кальциевые мыла, которые уже водонерастворимы и гидрофобны.

Многочисленные разработки, в том числе нашедшие внедрение в практике, выполнены с использованием гидрофобизаторов на основе кремнийорганических соединений (КОС). В структуре КОС реализуются связи Si—О и Si—С, что определяет их промежуточное положение между органическими и неорганическими соединениями. В большинстве соединений этого вида атом кремния связан только с двумя атомами кислорода, а другие связи замещены органическими группами СН3, С2Н5, С6Н5 и др., определяющими их эластичность. Степень эластичности конечных продуктов зависит не только от числа органических радикалов, но и от их величины и строения, а также от молекулярной массы.

В качестве гидрофобизаторов могут использоваться кремнийорганические соединения от мономеров до полимерных жидкостей. Кремнийорганические мономеры применяют в основном в качестве исходных компонентов для производства кремнийорганических полимеров.

Кремнийорганические полимеры условно подразделяют на две группы — олигомеры и высокомолекулярные соединения. Кремнийорганические гидрофобизаторы могут применяться для повышения морозостойкости бетонов и их коррозионной стойкости, снижения водопотребности бетонных смесей и воздухововлечения, повышения атмосферостойкости строительных материалов и изделий — кирпича, гипсовых изделий, каменных материалов, окрасочных и штукатурных составов, защиты стыков и фасадов крупнопанельных зданий, защитно-декоративной отделки здании и сооружений и т. п.

Одним из основных условий использования КОС в качеств’ гидрофобизаторов строительных материалов и конструкций является экономическая целесообразность. Поэтому в строительной практике применяются не все существующие кремнийорганические гидрофобизаторы, а лишь наиболее дешевые и доступные из них. К ним относятся, например, алкилхлорсиланы и кубовые остатки от их ректификации.

Алкилхлорсиланы — по существу, первые КОС, которые были использованы для гидрофобизации строительных материалов. Для этой цели ранее употреблялись и в отдельных случаях еще найдут свое применение выпускаемые отечественной промышленностью метил-трихлорсилан (МТС), этил-трихлорсилан (ЭТС), этил-дихлорсилан (ЭДС) и технический ди-метил-ди-хлорсилан. Наряду с алкилхлорсиланами с большим успехом применяются кубовые остатки от их ректификации на заводах-изготовителях.

Широко используются для гидрофобизации строительных материалов водные растворы омыленных натриевых (реже калиевых) метилсилоканатов (МСН), этилсиликонатов (ЭСН) и фенилсиликонатов (ФСН) – технические гостированные названия которых, соответственно ГКЖ-10, ГКЖ-11, ГКЖ-12. Эти составы имеют ряд преимуществ перед другими кремнийорганическими гидрофобизаторами, допускают применение в форме водных растворов, как правило, не имеют запаха, достаточно универсальны и дешевы, так как чаще всего изготавливаются из отходов производства.

Кремнийорганические соединения, как и большинство добавок, обладают полифункциональностью свойств, в связи с чем, оказывая в основном положительный эффект, они иногда ухудшают некоторые свойства бетонной смеси и бетона. Для устранения негативного влияния эти добавки объединяют с другими в комплексные полифункциональные модификаторы (ПФМ) для направленного изменения технологических и эксплуатационных свойств бетонов и растворов. В последнее время во всем мире разработано большое количество полифункциональных модификаторов. С большой степенью уверенности можно даже утверждать, что практически все химические добавки или модификаторы применяемые в настоящий момент в строительной индустрии — это ПФМ-ы.

Следует отметить, что примерно до 70-х гг. техническими гидрофобизирующими добавками в цементобетонной технологии служили преимущественно природные продукты (например, олеиновая кислота) или некоторые отходы промышленности (например, мылонафт). Однако экономические соображения лимитировали их применение в строительстве.

Поэтому исходя из экономических соображений и сохранения свойств бетона, которые он приобретает в случае применения КОС или природных гидрофобизаторов типа олеиновой кислоты, в настоящее время для изготовления гидрофобизирующих добавок стали очень широко использовать продукты и отходы нефтехимического синтеза, масложировой и целлюлозно-бумажной отраслей промышленности. Наибольшим распространением пользуются такие гидрофобизаторы этого типа, как окисленный петролатум, кубовые остатки синтетических жирных кислот (КОСЖК), битумные дисперсии, соапстоки растительных масел и др. Эти технические вещества отличаются друг от друг происхождением и составом, но для всех них характерно наличие молекул с резко выраженным асимметрично-полярным строением. Такие молекулы представляют собой соединения дифильного характера, имеющие гидрофильную “головку” (одну или несколько полярных групп типа —ОН, —СООН, —SO3H, —OSO3H, —СООМе, —NH2 и т. д.) и гидрофобный “хвост” (как правило, алифатическую цепь, иногда включающую в нее ароматическую группу).

Гидрофобизирующие добавки повышают удобоукладываемость бетонных смесей, увеличивают их связность, нерасслаиваемость. Это имеет особое значение при транспортировке и хранении смесей в летнее время. Кроме того, объемная гидрофобизация бетона добавками способствует снижению его водопоглощения в 1.5 – 2 раза по сравнению с бетоном без добавок.

Гидрофобизирующие добавки перед применением в бетон, как правило, переводят в водорастворимое состояние. Это можно отнести к их недостаткам. К тому же они пластифицируют главным образом “тощие” бетонные смеси и несколько замедляют процессы твердения.

Важным шагом в химической технологии бетона явилась разработка М. И. Хигеровичем, Б. Г. Скрамтаевым, Г. И. Горчаковым, Х.М. Лейбович и другими составов гидрофобизирующих добавок из гидрофобизатора и гидрофолизатора. Такие добавки оказывают универсальное действие на удобоукладываемость, т. е. они пластифицируют как “тощие”, так и “жирные” бетонные смеси. Влияние компонентов такой комплексной добавки (гидрофобизатор + гидрофилизатор) на физико-технические свойства бетонов, как правило, аддитивно, — т.е они усиливают влияние друг друга. При этом такие комплексные гидрофобно-пластифицирующие добавки представляют собой поверхностно-активные вещества (ПАВ) более высокой качественной категории, чем индивидуальные гидрофилизаторы и гидрофобизаторы, взятые в отдельности. Кроме того, применение таких добавок облегчает превращение гидрофобизируюшего компонента, как правило, водонерастворимого. в водоразбавляемую жидкость, которую удобно вводить с водой затворения при изготовлении смесей.

Недостатком гидрофобно-пластифицирующих добавок, с технологической точки зрения, является то, что они замедляют сроки схватывания и темп роста прочности цементного камня. Помимо того, величины удобоукладываемости бетонной смеси, прочности и ряд других физико-технических свойств бетона, достигнутые с такой добавкой могут потребовать улучшения. В таких случаях в состав гидрофобно-пластифицирующих добавок включают вещества, позволяющие не только исключить нежелательные эффекты компонентов добавки, но и получить с помощью взаимного усиления влияния ингредиентов (эффект синергизма) в направлении значительного увеличения физико-технических свойств цементных систем. В качестве таких дополнительных компонентов к гидрофобизирующим добавкам наиболее распространены добавки ускорители схватывания и твердения, а также различного вида и степени эффективности пластификаторы-водопонизители и суперпластификаторы.

Таким образом, исходя из приведенного краткого научно-технического обзора применения гидрофобизирующих добавок следует отметить, что их создание и применение послужило значительным вкладом в совершенствование технологии бетона и железобетона.